Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dis ; 11(4): 101019, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38560496

RESUMO

Tendon injuries often lead to joint dysfunction due to the limited self-regeneration capacity of tendons. Repairing tendons is a major challenge for surgeons and imposes a significant financial burden on society. Therefore, there is an urgent need to develop effective strategies for repairing injured tendons. Tendon tissue engineering using hydrogels has emerged as a promising approach that has attracted considerable interest. Hydrogels possess excellent biocompatibility and biodegradability, enabling them to create an extracellular matrix-like growth environment for cells. They can also serve as a carrier for cells or other substances to accelerate tendon repair. In the past decade, numerous studies have made significant progress in the preparation of hydrogel scaffolds for tendon healing. This review aims to provide an overview of recent research on the materials of hydrogel-based scaffolds used for tendon tissue engineering and discusses the delivery systems based on them.

2.
Cell Rep Med ; : 101511, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38614094

RESUMO

We present an integrated single-cell RNA sequencing atlas of the primary breast tumor microenvironment (TME) containing 236,363 cells from 119 biopsy samples across eight datasets. In this study, we leverage this resource for multiple analyses of immune and cancer epithelial cell heterogeneity. We define natural killer (NK) cell heterogeneity through six subsets in the breast TME. Because NK cell heterogeneity correlates with epithelial cell heterogeneity, we characterize epithelial cells at the level of single-gene expression, molecular subtype, and 10 categories reflecting intratumoral transcriptional heterogeneity. We develop InteractPrint, which considers how cancer epithelial cell heterogeneity influences cancer-immune interactions. We use T cell InteractPrint to predict response to immune checkpoint inhibition (ICI) in two breast cancer clinical trials testing neoadjuvant anti-PD-1 therapy. T cell InteractPrint was predictive of response in both trials versus PD-L1 (AUC = 0.82, 0.83 vs. 0.50, 0.72). This resource enables additional high-resolution investigations of the breast TME.

3.
Am J Sports Med ; 52(2): 461-473, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38426316

RESUMO

BACKGROUND: Treatment options for calcific tendinitis (CT) of the shoulder remain controversial. A consensus for an operative indication for this condition is lacking. PURPOSE: To compare nonoperative versus operative treatment for shoulder CT and analyze factors affecting the prognosis after treatment. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: A total of 180 patients diagnosed with symptomatic CT between January 2017 and September 2021 were evaluated in this retrospective cohort study. There were 103 patients treated nonoperatively at our institution, which included the use of nonsteroidal anti-inflammatory drugs, acupuncture, steroid injections, extracorporeal shock wave therapy, and ultrasound-guided needle aspiration/percutaneous irrigation. However, 77 patients were treated with arthroscopic surgery after 6 months of failed nonoperative treatment. The visual analog scale (VAS) for pain, the Constant-Murley score, and imaging were used to assess and evaluate outcomes. Descriptive data, functional outcomes, and imaging findings were compared between the operative and nonoperative groups before and after propensity score matching. Additionally, prognostic factors including calcium deposit size, tendon infiltration by calcium deposits, involvement of single or multiple tendons, and occurrence of rotator cuff tears were analyzed by comparing the groups to determine their effect on treatment options and recovery. RESULTS: Magnetic resonance imaging showed that the supraspinatus tendon (66.7%) was most commonly involved, followed by the infraspinatus (42.8%) and subscapularis (21.1%) tendons. Tendon infiltration by calcium deposits was observed in 84.4% of the patients, and rotator cuff tears occurred in 30.0% of the patients. After propensity score matching, there was no significant difference in changes in the Constant-Murley score (48.1 ± 25.4 vs 49.0 ± 22.8, respectively; P = .950) and VAS score (4.9 ± 2.3 vs 4.5 ± 1.9, respectively; P = .860) between the operative and nonoperative groups at the final follow-up. However, for patients with shoulder CT and without rotator cuff tears, there was a significant difference in changes in the Constant-Murley score (52.93 ± 25.18 vs 42.13 ± 22.35, respectively; P = .012) and VAS score (5.21 ± 2.06 vs 3.81 ± 1.98, respectively; P < .001) between the operative and nonoperative groups, but the recovery time in the operative group was longer than that in the nonoperative group (86.92 ± 138.56 vs 30.42 ± 54.97 days, respectively; P = .016). The results also showed that calcium deposit size, involvement of multiple tendons, and tendon infiltration by calcium deposits did not affect the recovery time after treatment. The survival analysis showed that rotator cuff tears affected the complete recovery of shoulder function. CONCLUSION: This study demonstrated no significant difference between nonoperative and operative treatment for patients with shoulder CT, on the whole. However, for patients with shoulder CT and without rotator cuff tears, the effect of operative treatment was better than that of nonoperative treatment; yet, operative treatment was shown to prolong the recovery time. Calcium deposit size, tendon infiltration by calcium deposits, and involvement of multiple tendons did not correlate with recovery time or the recovery of function. A rotator cuff tear was the only factor affecting the complete recovery of shoulder function.


Assuntos
Lesões do Manguito Rotador , Tendinopatia , Humanos , Ombro/cirurgia , Lesões do Manguito Rotador/diagnóstico por imagem , Lesões do Manguito Rotador/cirurgia , Estudos de Coortes , Artroscopia/métodos , Estudos Retrospectivos , Cálcio , Resultado do Tratamento , Imageamento por Ressonância Magnética , Tendinopatia/diagnóstico por imagem , Tendinopatia/terapia
4.
Sci Adv ; 10(11): eadk7160, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489358

RESUMO

During development, cells make switch-like decisions to activate new gene programs specifying cell lineage. The mechanisms underlying these decisive choices remain unclear. Here, we show that the cardiovascular transcriptional coactivator myocardin (MYOCD) activates cell identity genes by concentration-dependent and switch-like formation of transcriptional condensates. MYOCD forms such condensates and activates cell identity genes at critical concentration thresholds achieved during smooth muscle cell and cardiomyocyte differentiation. The carboxyl-terminal disordered region of MYOCD is necessary and sufficient for condensate formation. Disrupting this region's ability to form condensates disrupts gene activation and smooth muscle cell reprogramming. Rescuing condensate formation by replacing this region with disordered regions from functionally unrelated proteins rescues gene activation and smooth muscle cell reprogramming. Our findings demonstrate that MYOCD condensate formation is required for gene activation during cardiovascular differentiation. We propose that the formation of transcriptional condensates at critical concentrations of cell type-specific regulators provides a molecular switch underlying the activation of key cell identity genes during development.


Assuntos
Miócitos de Músculo Liso , Fatores de Transcrição , Linhagem da Célula/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Miócitos de Músculo Liso/metabolismo , Ativação Transcricional
5.
Proc Natl Acad Sci U S A ; 121(4): e2315925121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227654

RESUMO

Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and adolescents. Fusion-negative RMS (FN-RMS) accounts for more than 80% of all RMS cases. The long-term event-free survival rate for patients with high-grade FN-RMS is below 30%, highlighting the need for improved therapeutic strategies. CD73 is a 5' ectonucleotidase that hydrolyzes AMP to adenosine and regulates the purinergic signaling pathway. We found that CD73 is elevated in FN-RMS tumors that express high levels of TWIST2. While high expression of CD73 contributes to the pathogenesis of multiple cancers, its role in FN-RMS has not been investigated. We found that CD73 knockdown decreased FN-RMS cell growth while up-regulating the myogenic differentiation program. Moreover, mutation of the catalytic residues of CD73 rendered the protein enzymatically inactive and abolished its ability to stimulate FN-RMS growth. Overexpression of wildtype CD73, but not the catalytically inactive mutant, in CD73 knockdown FN-RMS cells restored their growth capacity. Likewise, treatment with an adenosine receptor A2A-B agonist partially rescued FN-RMS cell proliferation and bypassed the CD73 knockdown defective growth phenotype. These results demonstrate that the catalytic activity of CD73 contributes to the pathogenic growth of FN-RMS through the activation of the purinergic signaling pathway. Therefore, targeting CD73 and the purinergic signaling pathway represents a potential therapeutic approach for FN-RMS patients.


Assuntos
Rabdomiossarcoma , Adolescente , Criança , Humanos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Receptores Purinérgicos P1 , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Transdução de Sinais
6.
Nat Commun ; 15(1): 672, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253555

RESUMO

There are few effective treatments for small cell lung cancer (SCLC) underscoring the need for innovative therapeutic approaches. This study focuses on exploiting telomerase, a critical SCLC dependency as a therapeutic target. A prominent characteristic of SCLC is their reliance on telomerase activity, a key enzyme essential for their continuous proliferation. Here we utilize a nucleoside analog, 6-Thio-2'-deoxyguanosine (6TdG) currently in phase II clinical trials, that is preferentially incorporated by telomerase into telomeres leading to telomere dysfunction. Using preclinical mouse and human derived models we find low intermittent doses of 6TdG inhibit tumor growth and reduce metastatic burden. Anti-tumor efficacy correlates with a reduction in a subpopulation of cancer initiating like cells (CICs) identified by their expression of L1CAM/CD133 and highest telomerase activity. 6TdG treatment also leads to activation of innate and adaptive anti-tumor responses. Mechanistically, 6TdG depletes CICs and induces type-I interferon signaling leading to tumor immune visibility by activating tumor cell STING signaling. We also observe increased sensitivity to irradiation after 6TdG treatment in both syngeneic and humanized SCLC xenograft models both of which are dependent on the presence of host immune cells. This study underscores the immune-enhancing and metastasis-reducing effects of 6TdG, employing a range of complementary in vitro and in vivo SCLC preclinical models providing a potential therapeutic approach to SCLC.


Assuntos
Desoxiguanosina/análogos & derivados , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Telomerase , Tionucleosídeos , Humanos , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Telômero
7.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37856214

RESUMO

Cardiovascular diseases are the most common cause of worldwide morbidity and mortality, highlighting the necessity for advanced therapeutic strategies. Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ) is a prominent inducer of various cardiac disorders, which is mediated by 2 oxidation-sensitive methionine residues within the regulatory domain. We have previously shown that ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing enables the heart to recover function from otherwise severe damage following ischemia/reperfusion (IR) injury. Here, we extended this therapeutic concept toward potential clinical translation. We generated a humanized CAMK2D knockin mouse model in which the genomic sequence encoding the entire regulatory domain was replaced with the human sequence. This enabled comparison and optimization of two different editing strategies for the human genome in mice. To edit CAMK2D in vivo, we packaged the optimized editing components into an engineered myotropic adeno-associated virus (MyoAAV 2A), which enabled efficient delivery at a very low AAV dose into the humanized mice at the time of IR injury. CAMK2D-edited mice recovered cardiac function, showed improved exercise performance, and were protected from myocardial fibrosis, which was otherwise observed in injured control mice after IR. Our findings identify a potentially effective strategy for cardioprotection in response to oxidative damage.


Assuntos
Cardiomiopatias , Doenças Cardiovasculares , Camundongos , Animais , Humanos , Sistemas CRISPR-Cas , Edição de Genes , Coração , Cardiomiopatias/genética , Doenças Cardiovasculares/genética
8.
Circulation ; 148(19): 1490-1504, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37712250

RESUMO

BACKGROUND: Cardiovascular diseases are the main cause of worldwide morbidity and mortality, highlighting the need for new therapeutic strategies. Autophosphorylation and subsequent overactivation of the cardiac stress-responsive enzyme CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) serves as a central driver of multiple cardiac disorders. METHODS: To develop a comprehensive therapy for heart failure, we used CRISPR-Cas9 adenine base editing to ablate the autophosphorylation site of CaMKIIδ. We generated mice harboring a phospho-resistant CaMKIIδ mutation in the germline and subjected these mice to severe transverse aortic constriction, a model for heart failure. Cardiac function, transcriptional changes, apoptosis, and fibrosis were assessed by echocardiography, RNA sequencing, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and standard histology, respectively. Specificity toward CaMKIIδ gene editing was assessed using deep amplicon sequencing. Cellular Ca2+ homeostasis was analyzed using epifluorescence microscopy in Fura-2-loaded cardiomyocytes. RESULTS: Within 2 weeks after severe transverse aortic constriction surgery, 65% of all wild-type mice died, and the surviving mice showed dramatically impaired cardiac function. In contrast to wild-type mice, CaMKIIδ phospho-resistant gene-edited mice showed a mortality rate of only 11% and exhibited substantially improved cardiac function after severe transverse aortic constriction. Moreover, CaMKIIδ phospho-resistant mice were protected from heart failure-related aberrant changes in cardiac gene expression, myocardial apoptosis, and subsequent fibrosis, which were observed in wild-type mice after severe transverse aortic constriction. On the basis of identical mouse and human genome sequences encoding the autophosphorylation site of CaMKIIδ, we deployed the same editing strategy to modify this pathogenic site in human induced pluripotent stem cells. It is notable that we detected a >2000-fold increased specificity for editing of CaMKIIδ compared with other CaMKII isoforms, which is an important safety feature. While wild-type cardiomyocytes showed impaired Ca2+ transients and an increased frequency of arrhythmias after chronic ß-adrenergic stress, CaMKIIδ-edited cardiomyocytes were protected from these adverse responses. CONCLUSIONS: Ablation of CaMKIIδ autophosphorylation by adenine base editing may offer a potential broad-based therapeutic concept for human cardiac disease.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Camundongos , Humanos , Animais , Edição de Genes , Sistemas CRISPR-Cas , Camundongos Knockout , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Fibrose , Adenina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo
9.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395273

RESUMO

Mutations in genes encoding nuclear envelope proteins lead to diseases known as nuclear envelopathies, characterized by skeletal muscle and heart abnormalities, such as Emery-Dreifuss muscular dystrophy (EDMD). The tissue-specific role of the nuclear envelope in the etiology of these diseases has not been extensively explored. We previously showed that global deletion of the muscle-specific nuclear envelope protein NET39 in mice leads to neonatal lethality due to skeletal muscle dysfunction. To study the potential role of the Net39 gene in adulthood, we generated a muscle-specific conditional knockout (cKO) of Net39 in mice. cKO mice recapitulated key skeletal muscle features of EDMD, including muscle wasting, impaired muscle contractility, abnormal myonuclear morphology, and DNA damage. The loss of Net39 rendered myoblasts hypersensitive to mechanical stretch, resulting in stretch-induced DNA damage. Net39 was downregulated in a mouse model of congenital myopathy, and restoration of Net39 expression through AAV gene delivery extended life span and ameliorated muscle abnormalities. These findings establish NET39 as a direct contributor to the pathogenesis of EDMD that acts by protecting against mechanical stress and DNA damage.


Assuntos
Distrofia Muscular de Emery-Dreifuss , Animais , Camundongos , Estresse Mecânico , Distrofia Muscular de Emery-Dreifuss/metabolismo , Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Membrana Nuclear/metabolismo , Lamina Tipo A/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
10.
Nat Commun ; 14(1): 4333, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468485

RESUMO

Skeletal muscle fibers express distinct gene programs during development and maturation, but the underlying gene regulatory networks that confer stage-specific myofiber properties remain unknown. To decipher these distinctive gene programs and how they respond to neural activity, we generated a combined multi-omic single-nucleus RNA-seq and ATAC-seq atlas of mouse skeletal muscle development at multiple stages of embryonic, fetal, and postnatal life. We found that Myogenin, Klf5, and Tead4 form a transcriptional complex that synergistically activates the expression of muscle genes in developing myofibers. During myofiber maturation, the transcription factor Maf acts as a transcriptional switch to activate the mature fast muscle gene program. In skeletal muscles of mutant mice lacking voltage-gated L-type Ca2+ channels (Cav1.1), Maf expression and myofiber maturation are impaired. These findings provide a transcriptional atlas of muscle development and reveal genetic links between myofiber formation, maturation, and contraction.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Camundongos , Animais , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Diferenciação Celular
11.
Cancers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37345125

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that causes significant devastation, with no effective therapy for relapsed disease. The mechanisms behind treatment failures are poorly understood. Our study showed that treatment of RMS cells with vincristine led to an increase in CD133-positive stem-like resistant cells. Single cell RNAseq analysis revealed that MYC and YBX1 were among the top-scoring transcription factors in CD133-high expressing cells. Targeting MYC and YBX1 using CRISPR/Cas9 reduced stem-like characteristics and viability of the vincristine-resistant cells. MYC and YBX1 showed mutual regulation, with MYC binding to the YBX1 promoter and YBX1 binding to MYC mRNA. The MYC inhibitor MYC361i synergized with vincristine to reduce tumor growth and stem-like cells in a zebrafish model of RMS. MYC and YBX expression showed a positive correlation in RMS patients, and high MYC expression correlated with poor survival. Targeting the MYC-YBX1 axis holds promise for improving survival in RMS patients.

12.
Mol Ther Nucleic Acids ; 32: 522-535, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37215149

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive disease of progressive muscle weakness and wasting caused by the absence of dystrophin protein. Current gene therapy approaches using antisense oligonucleotides require lifelong dosing and have limited efficacy in restoring dystrophin production. A gene editing approach could permanently correct the genome and restore dystrophin protein expression. Here, we describe single-swap editing, in which an adenine base editor edits a single base pair at a splice donor site or splice acceptor site to enable exon skipping or reframing. In human induced pluripotent stem cell-derived cardiomyocytes, we demonstrate that single-swap editing can enable beneficial exon skipping or reframing for the three most therapeutically relevant exons-DMD exons 45, 51, and 53-which could be beneficial for 30% of all DMD patients. Furthermore, an adeno-associated virus delivery method for base editing components can efficiently restore dystrophin production locally and systemically in skeletal and cardiac muscles of a DMD mouse model containing a deletion of Dmd exon 44. Our studies demonstrate single-swap editing as a potential gene editing therapy for common DMD mutations.

13.
Sci Adv ; 9(17): eade8184, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115930

RESUMO

Rhabdomyosarcoma (RMS) is a common soft tissue sarcoma in children that resembles developing skeletal muscle. Unlike normal muscle cells, RMS cells fail to differentiate despite expression of the myogenic determination protein MYOD. The TWIST2 transcription factor is frequently overexpressed in fusion-negative RMS (FN-RMS). TWIST2 blocks differentiation by inhibiting MYOD activity in myoblasts, but its role in FN-RMS pathogenesis is incompletely understood. Here, we show that knockdown of TWIST2 enables FN-RMS cells to exit the cell cycle and undergo terminal myogenesis. TWIST2 knockdown also substantially reduces tumor growth in a mouse xenograft model of FN-RMS. Mechanistically, TWIST2 controls H3K27 acetylation at distal enhancers by interacting with the chromatin remodelers SMARCA4 and CHD3 to activate growth-related target genes and repress myogenesis-related target genes. These findings provide insights into the role of TWIST2 in maintaining an undifferentiated and tumorigenic state of FN-RMS and highlight the potential of suppressing TWIST2-regulated pathways to treat FN-RMS.


Assuntos
Rabdomiossarcoma , Sarcoma , Humanos , Animais , Camundongos , Montagem e Desmontagem da Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Sarcoma/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
14.
Nat Med ; 29(2): 401-411, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36797478

RESUMO

The most common form of genetic heart disease is hypertrophic cardiomyopathy (HCM), which is caused by variants in cardiac sarcomeric genes and leads to abnormal heart muscle thickening. Complications of HCM include heart failure, arrhythmia and sudden cardiac death. The dominant-negative c.1208G>A (p.R403Q) pathogenic variant (PV) in ß-myosin (MYH7) is a common and well-studied PV that leads to increased cardiac contractility and HCM onset. In this study we identify an adenine base editor and single-guide RNA system that can efficiently correct this human PV with minimal bystander editing and off-target editing at selected sites. We show that delivery of base editing components rescues pathological manifestations of HCM in induced pluripotent stem cell cardiomyocytes derived from patients with HCM and in a humanized mouse model of HCM. Our findings demonstrate the potential of base editing to treat inherited cardiac diseases and prompt the further development of adenine base editor-based therapies to correct monogenic variants causing cardiac disease.


Assuntos
Cardiomiopatia Hipertrófica , Miócitos Cardíacos , Humanos , Animais , Camundongos , Edição de Genes , Miocárdio , Arritmias Cardíacas , Mutação
15.
Science ; 379(6628): 179-185, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634166

RESUMO

CRISPR-Cas9 gene editing is emerging as a prospective therapy for genomic mutations. However, current editing approaches are directed primarily toward relatively small cohorts of patients with specific mutations. Here, we describe a cardioprotective strategy potentially applicable to a broad range of patients with heart disease. We used base editing to ablate the oxidative activation sites of CaMKIIδ, a primary driver of cardiac disease. We show in cardiomyocytes derived from human induced pluripotent stem cells that editing the CaMKIIδ gene to eliminate oxidation-sensitive methionine residues confers protection from ischemia/reperfusion (IR) injury. Moreover, CaMKIIδ editing in mice at the time of IR enables the heart to recover function from otherwise severe damage. CaMKIIδ gene editing may thus represent a permanent and advanced strategy for heart disease therapy.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Edição de Genes , Cardiopatias , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas , Cardiopatias/genética , Cardiopatias/terapia , Células-Tronco Pluripotentes Induzidas/enzimologia , Miócitos Cardíacos/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética
16.
Sci Transl Med ; 14(672): eade1633, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36417486

RESUMO

Mutations in RNA binding motif protein 20 (RBM20) are a common cause of familial dilated cardiomyopathy (DCM). Many RBM20 mutations cluster within an arginine/serine-rich (RS-rich) domain, which mediates nuclear localization. These mutations induce RBM20 mis-localization to form aberrant ribonucleoprotein (RNP) granules in the cytoplasm of cardiomyocytes and abnormal alternative splicing of cardiac genes, contributing to DCM. We used adenine base editing (ABE) and prime editing (PE) to correct pathogenic p.R634Q and p.R636S mutations in the RS-rich domain in human isogenic induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Using ABE to correct RBM20R634Q human iPSCs, we achieved 92% efficiency of A-to-G editing, which normalized alternative splicing of cardiac genes, restored nuclear localization of RBM20, and eliminated RNP granule formation. In addition, we developed a PE strategy to correct the RBM20R636S mutation in iPSCs and observed A-to-C editing at 40% efficiency. To evaluate the potential of ABE for DCM treatment, we also created Rbm20R636Q mutant mice. Homozygous (R636Q/R636Q) mice developed severe cardiac dysfunction, heart failure, and premature death. Systemic delivery of ABE components containing ABEmax-VRQR-SpCas9 and single-guide RNA by adeno-associated virus serotype 9 in these mice restored cardiac function as assessed by echocardiography and extended life span. As seen by RNA sequencing analysis, ABE correction rescued the cardiac transcriptional profile of treated R636Q/R636Q mice, compared to the abnormal gene expression seen in untreated mice. These findings demonstrate the potential of precise correction of genetic mutations as a promising therapeutic approach for DCM.


Assuntos
Cardiomiopatia Dilatada , Humanos , Camundongos , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Mutação/genética , Miócitos Cardíacos/metabolismo , Genômica
17.
Front Immunol ; 13: 996026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211388

RESUMO

The current immune checkpoint blockade therapy has been successful in treating some cancers but not others. New molecular targets and therapeutic approaches of cancer immunology need to be identified. Leukocyte associated immunoglobulin like receptor 1 (LAIR1) is an immune inhibitory receptor expressing on most immune cell types. However, it remains a question whether we can specifically and actively block LAIR1 signaling to activate immune responses for cancer treatment. Here we report the development of specific antagonistic anti-LAIR1 monoclonal antibodies and studied the effects of LAIR1 blockade on the anti-tumor immune functions. The anti-LAIR1 antagonistic antibody stimulated the activities of T cells, natural killer cells, macrophages, and dendritic cells in vitro. The single-cell RNA sequencing analysis of intratumoral immune cells in syngeneic human LAIR1 transgenic mice treated with control or anti-LAIR1 antagonist antibodies indicates that LAIR1 signaling blockade increased the numbers of CD4 memory T cells and inflammatory macrophages, but decreased those of pro-tumor macrophages, regulatory T cells, and plasmacytoid dendritic cells. Importantly, the LAIR1 blockade by the antagonistic antibody inhibited the activity of immunosuppressive myeloid cells and reactivated T cells from cancer patients in vitro and impeded tumor metastasis in a humanized mouse model. Blocking LAIR1 signaling in immune cells represents a promising strategy for development of anti-cancer immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunoterapia , Camundongos , Linfócitos T Reguladores
18.
Nat Commun ; 12(1): 5270, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489413

RESUMO

Following injury, cells in regenerative tissues have the ability to regrow. The mechanisms whereby regenerating cells adapt to injury-induced stress conditions and activate the regenerative program remain to be defined. Here, using the mammalian neonatal heart regeneration model, we show that Nrf1, a stress-responsive transcription factor encoded by the Nuclear Factor Erythroid 2 Like 1 (Nfe2l1) gene, is activated in regenerating cardiomyocytes. Genetic deletion of Nrf1 prevented regenerating cardiomyocytes from activating a transcriptional program required for heart regeneration. Conversely, Nrf1 overexpression protected the adult mouse heart from ischemia/reperfusion (I/R) injury. Nrf1 also protected human induced pluripotent stem cell-derived cardiomyocytes from doxorubicin-induced cardiotoxicity and other cardiotoxins. The protective function of Nrf1 is mediated by a dual stress response mechanism involving activation of the proteasome and redox balance. Our findings reveal that the adaptive stress response mechanism mediated by Nrf1 is required for neonatal heart regeneration and confers cardioprotection in the adult heart.


Assuntos
Coração/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Doxorrubicina/farmacologia , Feminino , Heme Oxigenase (Desciclizante)/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Camundongos Knockout , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/fisiologia , Fator 1 Relacionado a NF-E2/genética , Oxirredução , Proteostase , Ratos Sprague-Dawley , Regeneração
19.
Nat Cell Biol ; 23(5): 467-475, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33941892

RESUMO

Direct cardiac reprogramming of fibroblasts to cardiomyocytes presents an attractive therapeutic strategy to restore cardiac function following injury. Cardiac reprogramming was initially achieved through overexpression of the transcription factors Gata4, Mef2c and Tbx5; later, Hand2 and Akt1 were found to further enhance this process1-5. Yet, staunch epigenetic barriers severely limit the ability of these cocktails to reprogramme adult fibroblasts6,7. We undertook a screen of mammalian gene regulatory factors to discover novel regulators of cardiac reprogramming in adult fibroblasts and identified the histone reader PHF7 as the most potent activating factor8. Mechanistically, PHF7 localizes to cardiac super enhancers in fibroblasts, and through cooperation with the SWI/SNF complex, it increases chromatin accessibility and transcription factor binding at these sites. Furthermore, PHF7 recruits cardiac transcription factors to activate a positive transcriptional autoregulatory circuit in reprogramming. Importantly, PHF7 achieves efficient reprogramming in the absence of Gata4. Here, we highlight the underexplored necessity of cardiac epigenetic readers, such as PHF7, in harnessing chromatin remodelling and transcriptional complexes to overcome critical barriers to direct cardiac reprogramming.


Assuntos
Fator de Transcrição GATA4/metabolismo , Histonas/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Reprogramação Celular , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sequências Reguladoras de Ácido Nucleico/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
20.
Nat Commun ; 12(1): 690, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514739

RESUMO

Lamins and transmembrane proteins within the nuclear envelope regulate nuclear structure and chromatin organization. Nuclear envelope transmembrane protein 39 (Net39) is a muscle nuclear envelope protein whose functions in vivo have not been explored. We show that mice lacking Net39 succumb to severe myopathy and juvenile lethality, with concomitant disruption in nuclear integrity, chromatin accessibility, gene expression, and metabolism. These abnormalities resemble those of Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in A-type lamins (LMNA) and other genes, like Emerin (EMD). We observe that Net39 is downregulated in EDMD patients, implicating Net39 in the pathogenesis of this disorder. Our findings highlight the role of Net39 at the nuclear envelope in maintaining muscle chromatin organization, gene expression and function, and its potential contribution to the molecular etiology of EDMD.


Assuntos
Proteínas de Membrana/deficiência , Músculo Esquelético/patologia , Distrofia Muscular de Emery-Dreifuss/genética , Membrana Nuclear/patologia , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Lamina Tipo A/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Distrofia Muscular de Emery-Dreifuss/patologia , Proteínas Nucleares/genética , Fosfatidato Fosfatase/genética , RNA-Seq , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...